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Arising of magnetic walls in the vicinities of the Frèedericksz transition
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In this paper, the dynamical formation of twist-bend periodic walls at the neighborhoods of the Fre`edericksz
critical point of a nematic sample of liquid crystals is studied. The theory that describes the arising of these
periodic structures affirms that the mode with the fastest initial growth will fix the observed properties of these
patterns. But, just above the Fre`edericksz threshold there is a region where this leading mode becomes null
and, therefore, a homogeneous bending of the director may be detected. This prediction was not confirmed by
the experiment, and walls with very well defined wavelength were found. We will show here that the fastest
growing mode cannot be defined around the Fre`edericksz threshold and, therefore, a new way to compute the
observed periodicity must be formulated. We assume that the observed wall results from a sum of a continuum
and nonsharp distribution of modes in which the null mode is at the center.
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I. INTRODUCTION

It is well known that, in nematic liquid crystals~NLCs!,
the coupling between the bending of the director and
movement of the nematic fluid can produce highly symm
ric patterns. The so-called magnetic walls are example
these well-studied textures. They make the transition
tween adjacent symmetrical distorted regions of nem
phase and are usually found when, under appropriated
ditions, the NLC is submitted to an external magnetic fie
@1# greater than the Fre`edericksz threshold@2#. Once formed,
these patterns are not stable. It has been observed tha
high magnetic fields, they decline, losing each of their
tributes: extremely regular, well-defined, and seemingly o
dimensional periodic structures@3–6#.

The theory that first described the formation of the
structures in NLCs stated that, for high magnetic fields,
coupling between the bending of the director and the c
comitant flow of the nematic fluid could exponentially am
plify some random thermal fluctuations@7–9#. In this sce-
nario, as soon as the fluid flow stops, the fate of th
structures begins and the dynamically coupled process ac
during the fluid flow must be responsible for the outstand
seemingly one-dimensional and periodic character exhib
by these walls@10–12#. With the use of the anisotropic dy
namical properties of NLCs, Lonberget al. @8# have sup-
posed that the observed periodicity results from a selec
mechanism that amplifies to macroscopic scale some w
defined thermal fluctuations. According to this model,
random thermal modes are amplified. But, its central conc
affirms that the final observed profile of these patterns
determined, in the beginning of the process, by the mo
having the fastest initial amplification. From now on, th
mechanism will be referred to as the leading mode princip

Nevertheless, there is some theoretical and experime
evidence indicating that, whenever a good image of the
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ginning of these structures is provided, this principle may
give a full explanation of the pattern observed on the m
netic walls@5,9,13#. In a recent paper, some of us have fou
that, in the neighborhoods of the Fre`edericksz critical point,
the comparison between the predictions of the leading m
principle and experimental facts is in irreconcilable disagr
ment@14,6#. That is, the leading mode principle predicts th
when the Fre`edericksz threshold is approached, the coher
internal motion of the nematic material becomes smaller
smaller and there is a point—Hlm—greater than the Fre`eder-
icksz critical point—HF—below which there is no more in
duced motion of the nematic material. The regionHF,H
,Hlm is known as the forbidden region. So, according to
usual interpretation for the arising of magnetic walls in ne
atic liquid crystals, in the forbidden region, the torque of t
external field on the nematic molecules produces a unifo
alignment, and the periodic walls are not detected. Never
less, in an experimental investigation, using the twist-be
geometry @1,8,15#, we found that when the Fre`edericksz
threshold is approached, the emergence of these struc
continues@6# and, no matter how close the Fre`edericksz criti-
cal point is approached, a homogeneous alignment of
director has never been found. Moreover, it was obser
that the time spent in the construction of these periodic w
diverges as the critical point is approached. This has not b
considered by Lonberg in his calculations concerning
neighborhoods of the critical point since, according to th
@6#, the formation of any magnetic wall would encompass
finite time interval, and only with the formation of a homo
geneous bending—produced at the neighborhoods of
Frèedericksz critical point—would an infinite time interva
be expected. Therefore, the predictions of the theory ba
on the leading mode principle were not confirmed and
forbidden region was not detected by the experiment.

The aim of this paper is to study the pattern formation
the region above the Fre`edericksz threshold where the cu
rent model, based on the leading mode principle, seems t
inadequate. A careful analytical study of the nonlinearit
involved in the pattern formation at the neighborhoods of
Frèedericksz threshold will be undertaken. It will be show
that, in the neighborhoods of the critical point, a unique le
©2001 The American Physical Society07-1
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ing mode cannot be clearly defined. In fact, there is a se
neighboring modes, continuously distributed, that grow pr
tically at the same rate. The result of this collective growth
not a homogeneous bending of the director, as predicted
the leading mode principle, but is rather a set of very w
defined periodic walls whose formation tends to encomp
an infinite time interval when the Fre`edericksz threshold is
approached.

This work is divided into two main sections. In the ne
section, we will formulate a nonlinear mathematical mod
for the arising of the periodic walls. With this formulation
we will be able to obtain the final amplitude of each Four
component of the magnetic wall. In the final section, we w
use the results of Sec. II to compute the periodicity and
time spent with the formation of the periodic walls in th
forbidden region.

II. FUNDAMENTALS

In order to obtain workable equations for a description
the arising of the magnetic walls, some approximations w
be done on the set of equations describing the hydrodyn
ics of the nematic material, the so-called Eriksen-Les
Parodi ~ELP! approach@16–18#. Normally @8–12,19,20#,
these approximations are conducted in such a way that
final equations become linear. The predicted immediate
fect of this procedure is an unbounded exponential grow
of the walls’ amplitude and, as a consequence, the satur
behavior of the system cannot be studied. As, by definiti
the leading mode should be determined at the initial m
ments of the process, this practice is sufficient to select
initial fastest growing mode. However, the patterns to
described in this work do not arise immediately after t
initiation of the magnetic field. Their emergence lasts a lo
time and, therefore, the linear approach is not acceptable
along the approximations to be described below, we w
avoid the complete linearization of the equations. The cho
of the nonlinear terms to be retained will be guided by
criterion that stresses that only those ELP equation terms
are decisive for a saturated profile of the walls’ amplitude
important in the long behavior of these structures. Furth
more, even being described by nonlinear equations, we
show that, in the forbidden region, the coupling betwe
different modes is negligibly small and need not be cons
ered.

To study the physics of the periodic walls at the neig
borhoods of the Fre`edericksz transition, a NLC sample insid
a microslide glass with dimensions (a,b,d) that satisfy the
relationa@b@d will be considered. The director is initially
uniformly aligned along theeW x direction and an external con
trolled magnetic fieldH is applied along theeW y direction.
When this is done, there is a competition between the m
netic susceptibility, which tends to align the director alo
the direction of the magnetic field, and the elastic ener
which tends to produce a director orientation consistent w
its orientation at the surface of the sample. WhenH is greater
than the Fre`edericksz thresholdHF , the magnetic suscepti
bility overcomes the elastic resistance of the medium,
the director begins to bend towards the direction of the
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ternal magnetic field, trying to become parallel or antipara
to it. Due to this symmetry breaking, the profile of the dire
tor becomes inhomogeneous and some well-defined
symmetric patterns fill the sample@1,2,21,22#. These patterns
have the aspect of a set of one-dimensional structure
magnetic walls—periodically distributed along theeW x direc-
tion.

The first approximation that will be done for the study
these structures assumes that the director field maintain
initial planar geometry during its rotation provoked by th
external magnetic field. That is, the sample is prepared
such a way that, initially, the orientation of the external ma
netic field is perpendicular to the director direction at
points in the sample. Hence, these two directions—the m
netic field and the director direction—define a plane on
sample and, as there is not an external torque pushing
director out of this plane, it can be assumed that, during
director rotation, such a plane maintains its orientation. F
thermore, as stated above, the widthd of the sample along
the eW z direction is so small when compared with the oth
dimensions of the sample that it can be assumed that
elastic interaction~which is proportional to 1/d2) will immo-
bilize any director motion along this direction. These plan
conditions can be used to obtain two important simplific
tions on the hydrodynamics equations. The first one is
imposition that the director does not acquire any compon
along theeW z direction @8#,

nx5 cosu~x,y,z!, ny5 sinu~x,y,z!, nz50. ~1!

The second one is the assumption that the fluid velocityVW

does not have components along theeW z direction, that is,

Vz50. ~2!

These two conditions are equivalent to assuming that
dynamical equations for this problem are bidimension
That is, when considering the equations of the ELP
proach, only its components along the plane defined by
axis eW x andeW y must be considered.

In the ELP approach@1,16–18#, the time evolution of the
director direction and the motion of the nematic material
given by a set of differential equations composed by
anisotropic version of the Navier-Stokes equation, the b
ance of torques equation, and the equation of continuity.
begin our study with the continuity equation that, as the s
tem is assumed to be incompressible, takes the form@23,24#

]aVa50. ~3!

One important characteristic of the geometry of the magn
walls can be understood from this equation. It is an exp
mental fact that the componentVx of the velocity is relevant
only at the borders of the sample@8,11,12#. Consequently, as
the magnetic walls are observed far away from the bord
one can makeVx50 on the continuity equation. As the sys
tem is dynamically bidimensional, the continuity equati
gives
7-2
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]yVy50. ~4!

for the region where the walls are observed. Essentially,
equation demonstrates that as long as the problem ca
considered bidimensional and there is no fluid motion alo
theeW x direction, the velocity of the nematic fluid will remai
constant along theeW y direction. The characteristic form o
the stripes observed in the magnetic walls is an immed
consequence of this equation.

The Navier-Stokes equation is given by

rS ]Va

]t
1Vb

]Va

]xb
D5

]

]xb
~2pdab1sba!, ~5!

wherer is the density of the system,Va is thea component
of the velocity,p is the pressure, andsba is the associated
anisotropic stress tensor, which depends on the velocityVW of
the fluid, the bending of the directoru, and its time variation
rate u̇ @1,23,24#.

The approximation assumed above allows us to cons
the problem as bidimensional. So, the components of
Navier-Stokes describing the motion of the nematic flu
along theeW x and eW y directions are sufficient to describe th
walls’ phenomenology. Hence, the pressurep can be elimi-
nated from these equations by subtracting one of the com
nents of these equations from another@11#. Furthermore, we
will consider that the velocity of the matter in the sample
such that we can neglect the nonlinear termVb]bVa . Thus,

r
d

dt
~]xVy2]yVx!5]x

2sxy2]y
2syx1]x]y~syy2sxx!

1]z~]xszy2]yszx!. ~6!

To further simplify this equation, we must remember th
the characteristic time involved in the phenomenon that
are studying is so long@6# that the viscosity becomes th
dominant dynamical parameter of the nematic fluid flow a
therefore, any inertial term can be neglected. Furtherm
using the expressions for the viscosity tensor given, for
ample, in Refs.@23,24#, and taking into account Eq.~4!, we
get

c1~u!]x
2~]xVy!1c2~u!]xVy1c3~u!] tu1c4~u!]x

2~] tu!50,
~7!

where

c1~u!5h31~h22h3!sin2 u1~h12h312h3 sin2 u!cos2 u,

c2~u!52
1

2 S p

d D 2

@h21h31~h32h2!cos 2u#,

~8!
c3~u!5g1]x

2u sin 2u,

c4~u!52
1

2
g1~11 cos 2u!,
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and h1 ,h2, and h3 are the Miesowicz’s coefficients,g1 is
the viscosity’s coefficients related to the rotation of the
rector ~it was assumed thatg2'2g1), and along the direc-
tion eW z it was assumed that]z

2u52(p/d)2u.
Moreover, we also consider that the walls’ periodici

along theeW x direction allows us to Fourier-decompose]xVy
andu. That is,

]xVy5(
n

an cosS n
2p

L
xD ,

~9!

u5(
n

bn cosS n
2p

L
xD⇒] tu5(

n
ḃn cosS n

2p

L
xD ,

wheren50,1•••L/2 andḃn5] tbn . So, from these equation
it follows that

an52
c3~u!2k2c4~u!

c2~u!2k2c1~u!
ḃn . ~10!

So, each Fourier component of] tu(ḃn) induces a shear
ing motion of the nematic material, inducing a non-nu
value to the Fourier components of]xVy(an). It is important
to observe that, through the functionsc1 , c2 , c3, and c4
given in Eq.~8!, Eq. ~10! is strongly dependent onu and,
therefore, it is also strongly dependent onbn , causing the
coupling between the different modes. At this point, t
usual approach@8# restricted the analysis of the walls’ for
mation to theu-independent term of this equation. This pr
cedure predicts an unbounded growing foru and, conse-
quently, does not predict a saturated profile for the wa
But, when we consider the next-order term, we obtain

ak5R0S 12
u2

wo
2D ḃk , ~11!

where

R05
g1k̃2

h31 k̃2h1

and

wo
25

h31 k̃2h1

~h212h3!1 k̃2~2h11h212h3!
, ~12!

and k̃25(kd/p)2 is the reduced wave vector. This equatio
shows that for eachk̃, there is an angle,wo , above which the
Fourier component of the bending of the director,ḃk , no
longer induces a non-null value to the corresponding Fou
component,ak , of the shearing,]xVy .

As the above equation is not sufficient to find independ
solutions for Vy and u, another equation is needed. Th
equation is the balance of torques equation@1,23,24# that, for
the planar geometry defined by Eqs.~1! and~2!, assumes the
following form:
7-3
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g1] tu5g1nx
2~]xVy!1K33@]x

2u1]y
2u#1K22]z

2u

1xaH2nxny . ~13!

By substituting in this equation the value of the she
]xVy obtained in Eq.~11! and making the changes

t5
xaHc

2

g1
t, h25

H2

HF
2

, K̃5
K33

K22
,

xaHF
25K22S p

d D 2

1K33S p

b D 2

.K22S p

d D 2

, ~14!

it is obtained that

ḃn5
1

to
bnH 12

bn
2

umax
2 J 2

I n

toumax
2

, ~15!

where

to~k!5
~12R0!

~h2212K̃k̃2!
5

S 12
g1k̃2

h31 k̃2h1
D

~h2212K̃k̃2!
, ~16!

umax
2 ~ k̃!5

~h2212K̃k̃2!

F ~h2212K̃k̃2!
R0

12R0
S 11

1

wo
2D 1

2

3
h2G ,

~17!

and

I n5E
0

L

u3 cosS n
2p

L
xDdx2bn

3 , n50,1•••
L

2

describes the interaction between the different Fou
modes. Now, observe that the coupling of the termI n is
given by the product of the variablesto and umax

2 , which
determines the intensity of the interaction between the v
ous modes. First, observe~this will be demonstrated in deta
in the next section! that in the forbidden region the depe
dence of these variables onk̃2 is so flat that it does select an
mode and, therefore, in this region this coupling term can
considered constant. Furthermore, it is an experime
fact—which will be confirmed by our theory in th
following—that, in this region, the timeto spent in the aris-
ing of the wall is exceedingly large, becoming infinite at t
Frèedericksz threshold. So, this interacting term is a sm
constant that, in the forbidden region, can be neglec
Hence, our approximation for this problem considers tha

ḃk5
1

to
bkH 12

bk
2

umax
2 J ~18!

gives the time evolution of each mode in the neighborho
of the Frèedericksz threshold.
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As can be seen, for example, in@13#, Eq. ~18! has the
general form of the standard equations that describe the
terns formation in many physical systems. In this paper
will be assumed that it describes the formation of the m
netic walls of NLCs in the neighborhoods of the Fre`eder-
icksz threshold. Their first-order term reproduces the alre
known results about the initial moments of the time evo
tion of bk . Up to this order, an unbounded exponent
growth for the amplitudebk is predicted and, according t
Lonberget al. @8#, the leading mode is the one that provid
the fastest growth to this amplitude. Now, with the thir
order term of Eq.~18!, the unbounded growth of the walls
amplitude is prevented and, therefore, a study of the lo
behavior of these structures is possible.

Finally, Eq.~18! is integrable and its solution is given b

bk~t!56umax~ k̃!A Aoe[2t/to( k̃)]

umax
2 ~ k̃!1Aoe[2t/to( k̃)]

, ~19!

whereAo is an integration constant that may be fixed att
50.

This is the equation that gives the time evolution of ea
modek̃. In the following section, the mathematical results
this section will be used to study the arising of magne
walls at the neighborhoods of the Fre`edericksz transition.

III. THE LEADING MODE

In this section, we will use Eq.~18! to examine the for-
mation of magnetic walls at the neighborhoods of the Fre`ed-
ericksz threshold and it will be shown that, in this region, t
statement that says that there is a unique isolated mode
termining the physical properties of the observed pattern
rather ambiguous and cannot be considered—even a
approximation—for the real physical situation. That is,
large set of states contributes equally to the formation of
magnetic walls in this region.

The leading mode principle states that the wave numb
ko , observed in the periodic walls can be determined
choosing the mode that gives the initial highest velocity
the amplitude of the periodic walls,bk . So, according to the
results of the preceding section, this mode must satisfy

]k~ ḃk!50 at t50. ~20!

When this equation is applied to Eq.~18!, it leads to

2
]kto

to
H 12

uo
2

umax
2 J 12

uo
2

umax
3

]kumax50, ~21!

whereuo stands for the initial distribution of the modebk
that, as usual@1,9#, can be found using the equipartition the
rem. The behavior of the solution obtained with Eq.~21!,
when the magnetic field approaches the Fre`edericksz thresh-
old (h2.1), is now going to be discussed. An analytic
computation shows that aroundk2'0 the non-null and rea
solutions of Eq.~ 21! are given by
7-4
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k2'22h3

3h3@g1~12h2!1K̃33h3#1uo
2g1@3h2~h221!1h3~11h229!#

P~h1 ,h2 ,h3 ,g1 ,h2!
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k2[0, ~22!

where P(h1 ,h2 ,h3 ,g1 ,h2) is an awkward and non-nul
function that has no influence on the results presented be
From this equation, it is easy to see that in the whole inter

1<h2<hlm
2 , ~23!

where

hlm
2 5S Hlm

HF
2 D 2

511
h3~3K̃33h312uo

2g1!

g1@3h32uo
2~3h2111h3!#

, ~24!

the unique real solution of Eq.~21! is given byk2[0.
So, according to the leading mode principle, a homo

neous bending of the director~and, therefore, an absence
walls! would be found for these values of the magnetic fie
@19,20#. Some of us have done experimental investigatio
of these results and found that, no matter how close to
Frèedericksz threshold the measurements are made, mag
walls were always found@6#. Furthermore, the time that th
observer must wait for the clear observation of these st
tures seems to become infinite as the critical point is
proached.

As these experimental results are in clear contradic
with the predictions of the leading mode principle, it b
comes necessary to understand the formation of these w
from another point of view. In order to do it, we consider t
second derivative,]k

2(ḃk), at t50. It was analytically com-
puted around the critical point, giving

]k
2~ ḃk!'2h3

2@3g1~h221!~h32uo
2h2!

23K̃33h3
21g1h3uo

2~9211h2!#

'6h3
4K̃33

~h22hlm
2 !

~12hlm
2 !

. ~25!

From this result, it is easy to see that, at the pointh5hlm ,
the second derivative is null and, furthermore, it chan
sign when this point is crossed. Moreover, in the whole
terval 1<h2<hlm

2 , the second derivative is small~it is pro-
portional to h3

4) and negative. Hence, as the range of
modes contributing to the walls formation is given by t
inverse of]k

2(ḃk), the usual interpretation that follows Eq
~22!, which says that in the forbidden region the uniq
mode contributing to the wall’s formation is given byk̃2

50, cannot be true.
Likewise, a straightforward calculation shows that
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]k
3~ ḃk!50 at t50 for 1<h2<hlm

2 . ~26!

Finally, using an analytical computation, it was found tha

]k
4~ ḃk!5224K̃

h1

h3
1O~uo

2!,0 at t50 for h5hlm ,

~27!

where O(uo
2) represents the terms of the order ofuo

2 , or
higher, that are insignificant. So, exactly ath5hlm , only the
fourth derivative of the growing speed of the director wi
relation tok is non-null and it is this value that controls th
width of the distribution of modes at this point.

Above, we have argued that, in the forbidden region,
interaction between different modes does not need to
taken into account due to the fact that its coupling term
negligibly small, nor does it distinguish between differe
modes. Nevertheless, one can challenge this argumen
saying that the long time evolved in the building of the o
served structures may invalidate our reasoning. However,
result stated above, saying that in the forbidden region th
is no leading mode and that all modes in the neighborho
of k̃250 contribute to the final profile of the walls, wa
established in the very beginning of the process, att50,
before the interaction between the different modes had t
to produce any significant effect. So, the main message
this work, namely the breakdown of the leading mode pr
ciple in the forbidden region, does depend on these inte
tions.

The results exposed in Eqs.~22!–~27! are graphically
exhibited in Fig. 1, where a numerical computation
shown using the known parameters of t
„N-~p-methoxybenzylidene!-p8-butylaniline… ~MBBA ! for
the behavior ofḃk̃ as a function ofk̃ as the pointhlm is
approached. From these figures, we clearly see that, aro
hlm , the concept of an isolated mode contributing to t
observed periodicity of the walls is meaningless and a n
way to compute the contribution to the final periodicity
the walls must be found.

We will now propose a way to calculate the walls’ pe
odicity in the forbidden region. As in this region the ob
served periodicity of the walls cannot be understood a
result of the contribution of a unique and isolated mode,
may suppose that the final walls’ periodicity is determin
by the long-time collective growth of the modes neighbori
the modek̃50. In this case, a natural candidate to fix t
participation of each of these modes in the final profile
merely the maximum amplitude that each of them can att
So, it can be assumed that, aroundk̃.0, the final profile
u(x)5u(x,t→`) of the walls could be approximated by
7-5
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FIG. 1. Graphics of the function]tu at t50 whenk̃ is changed. Each figure was computed for a differenth value. By using the known
parameters of the MBBA, they show the evolution of the leading mode as the pointhlm , defined at Eq.~24!, is approached.~a! was

computed ath52hlm , and the pointk̃, for which the function]tu has the maximum growth, is clearly observed. This is the fastest m
that, according to the leading mode principle, will determine the final periodicity of the wall.~b! was computed ath51.35hlm , and it shows
that the leading mode is less pronounced.~c! was computed ath51.1hlm , showing that the leading mode is not clearly recognizable.~d! was

computed ath5hlm , demonstrating that the leading mode collapsed to the pointk̃50. From these figures we have clear evidence that
hlm is approached, the width of the modes around the leading mode becomes so large that an isolated leading mode cannot be

The magnetic field was rescaled is such a way that the Fre`edericksz threshold was taken as unity. The unities ofk̃ and]tu can be considered
as arbitrary.
-

1.
not
are
u~x!5 lim
t→`

(
k̃

bk̃~ t !cos~ k̃x!

'E
0

L/2

umax~ k̃!cos~ k̃x!, ~28!

whereumax(k̃) is the asymptotic limit of Eq.~19!, given by
Eq. ~17!. However, with the form forumax(k) given by Eq.
~17!, this integration is extremely difficult, and probably im
possible. As the maximum ofumax(k) occurs atk̃50, it can
be expanded around this point and

umax~k!.Aa2bk2 ~29!

is obtained, where

a5
3

2h2
~h221! and b5

3

2

K̃

h2
. ~30!

It has been assumed that (h221)2 is small, so
04170
u~x!5AbE
2Aa/b

Aa/b Aa

b
2k2 cos~kx!dk

5
pAa

x
J1SAa

b
xD , ~31!

whereJ1(Aa/bx) is a first-class Bessel function of order
As, due to our nonlinear approximations, our results can
be extended to the walls’ nodes and consequently they
only valid for smallx, we can use the approximationJ1(x)
.(x/2)cos(x/2) to obtain

u~x!.
p

2

a

Ab
cos

1

2
Aa

b
x

5
p

2
A 3

2K̃h2
~h221!cos

1

2
A~h221!

K̃
x. ~32!

With this equation for the profile of the wall along theeW x
direction, we can get its wave vector, which is given by
7-6
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k̃ 25
1

4K̃
~h221!, ~33!

which is just the result experimentally found, namely a line
relationship betweenh2 andk̃2 @6#. Furthermore, this expres
sion for k̃2 can be substituted in Eq.~16! to obtain the time
spent in the walls’ formation, in the forbidden region, as
function of the magnetic fieldh. The result is given by

to~h2!5
4

3~h221!
H ~h221!~h12g1!14K̃h3

~h221!h114K̃h3
J , ~34!

which, as was experimentally found, diverges whenh2→1.

IV. CONCLUSION

In this paper, we have studied the formation of perio
patterns—magnetic walls—at the neighborhoods of
Frèedericksz critical point. These structures were induced
an external magnetic field and a twist-bend geometry w
used@1#. We have shown that the results of the leading mo
principle, which is the theory that up to now has been use
describe their formation@7,8#, cannot explain its arising in
this region. It is known that in the interval 1<h2<hlm

2 ,
wherehlm

2 is given in Eq.~24!, the leading mode principle
v.

s.

.

ys

04170
r

c
e
y
s
e
to

predicts that the fastest mode will correspond tok50. This
result corresponds to a homogeneous bending of the dire
and, therefore, to the absence of any texture. As this re
was not observed in the experiment, we have here str
evidence that, at least around the Fre`edericksz threshold, the
leading mode principle deserves some reformulation. T
main result presented by this work states that, in this reg
the modek50 is the center of a large distribution of mode
where each of them gives almost the same contribution to
final profile of the observed walls. In order to obtain a mod
for the magnetic walls formation, we have supposed that,
to the long time involved in this process, around the Fre`ed-
ericksz threshold, each mode attains its maximum amplitu
These isolated contributions have been added and the
profile of the periodic walls has been obtained. Our resu
agree with the experimental findings and, at least for
twist-bend geometry, we have proved that there is not a
bidden region. We have also computed the time spent w
the formation of these structures and we have experimen
found that, as the Fre`edericksz threshold is approached, th
time approaches the infinite.
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