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Arising of magnetic walls in the vicinities of the Freedericksz transition
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In this paper, the dynamical formation of twist-bend periodic walls at the neighborhoods of #ueFoksz
critical point of a nematic sample of liquid crystals is studied. The theory that describes the arising of these
periodic structures affirms that the mode with the fastest initial growth will fix the observed properties of these
patterns. But, just above the Tedericksz threshold there is a region where this leading mode becomes null
and, therefore, a homogeneous bending of the director may be detected. This prediction was not confirmed by
the experiment, and walls with very well defined wavelength were found. We will show here that the fastest
growing mode cannot be defined around theeBegicksz threshold and, therefore, a new way to compute the
observed periodicity must be formulated. We assume that the observed wall results from a sum of a continuum
and nonsharp distribution of modes in which the null mode is at the center.
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[. INTRODUCTION ginning of these structures is provided, this principle may not
give a full explanation of the pattern observed on the mag-
It is well known that, in nematic liquid crystaldNLCs), netic walls[5,9,13. In a recent paper, some of us have found
the coupling between the bending of the director and thehat, in the neighborhoods of the Edericksz critical point,
movement of the nematic fluid can produce highly symmetthe comparison between the predictions of the leading mode
ric patterns. The so-called magnetic walls are examples gfrinciple and experimental facts is in irreconcilable disagree-
these well-studied textures. They make the transition bement[14,6]. That is, the leading mode principle predicts that
tween adjacent symmetrical distorted regions of nematiovhen the Fredericksz threshold is approached, the coherent
phase and are usually found when, under appropriated coirternal motion of the nematic material becomes smaller and
ditions, the NLC is submitted to an external magnetic fieldsmaller and there is a pointHy,,—greater than the Fegler-
[1] greater than the Feelericksz thresholf2]. Once formed, icksz critical point—Hg—below which there is no more in-
these patterns are not stable. It has been observed that, fduced motion of the nematic material. The regida<H
high magnetic fields, they decline, losing each of their at-<<H,,, is known as the forbidden region. So, according to the
tributes: extremely regular, well-defined, and seemingly oneusual interpretation for the arising of magnetic walls in nem-
dimensional periodic structur¢8—6). atic liquid crystals, in the forbidden region, the torque of the
The theory that first described the formation of theseexternal field on the nematic molecules produces a uniform
structures in NLCs stated that, for high magnetic fields, thealignment, and the periodic walls are not detected. Neverthe-
coupling between the bending of the director and the conless, in an experimental investigation, using the twist-bend
comitant flow of the nematic fluid could exponentially am- geometry[1,8,15, we found that when the Feeericksz
plify some random thermal fluctuatiod—9]. In this sce- threshold is approached, the emergence of these structures
nario, as soon as the fluid flow stops, the fate of theseontinueg6]and, no matter how close the Edericksz criti-
structures begins and the dynamically coupled process actirgal point is approached, a homogeneous alignment of the
during the fluid flow must be responsible for the outstandingdirector has never been found. Moreover, it was observed
seemingly one-dimensional and periodic character exhibitethat the time spent in the construction of these periodic walls
by these wall§10-172. With the use of the anisotropic dy- diverges as the critical point is approached. This has not been
namical properties of NLCs, Lonbergt al. [8] have sup- considered by Lonberg in his calculations concerning the
posed that the observed periodicity results from a selectioneighborhoods of the critical point since, according to them
mechanism that amplifies to macroscopic scale some wel[6], the formation of any magnetic wall would encompass a
defined thermal fluctuations. According to this model, allfinite time interval, and only with the formation of a homo-
random thermal modes are amplified. But, its central concepgeneous bending—produced at the neighborhoods of the
affirms that the final observed profile of these patterns isreedericksz critical point—would an infinite time interval
determined, in the beginning of the process, by the modebe expected. Therefore, the predictions of the theory based
having the fastest initial amplification. From now on, this on the leading mode principle were not confirmed and a
mechanism will be referred to as the leading mode principleforbidden region was not detected by the experiment.
Nevertheless, there is some theoretical and experimental The aim of this paper is to study the pattern formation in
evidence indicating that, whenever a good image of the bethe region above the Federicksz threshold where the cur-
rent model, based on the leading mode principle, seems to be
inadequate. A careful analytical study of the nonlinearities
*Permanent address: Departamento d&icB) Universidade Es- involved in the pattern formation at the neighborhoods of the
tadual de MaringaAvenida Colombo, 5790, 87020-900 Maringa Freedericksz threshold will be undertaken. It will be shown
(PR), Brazil. that, in the neighborhoods of the critical point, a unique lead-
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ing mode cannot be clearly defined. In fact, there is a set ofernal magnetic field, trying to become parallel or antiparallel
neighboring modes, continuously distributed, that grow practo it. Due to this symmetry breaking, the profile of the direc-
tically at the same rate. The result of this collective growth istor becomes inhomogeneous and some well-defined and
not a homogeneous bending of the director, as predicted bsymmetric patterns fill the samp]&,2,21,22. These patterns
the leading mode principle, but is rather a set of very wellhave the aspect of a set of one-dimensional structures—
defined periodic walls whose formation tends to encompasgagnetic walls—periodically distributed along tbg direc-
an infinite time interval when the Feeericksz threshold is tjon.
approached. The first approximation that will be done for the study of
This work is divided into two main sections. In the next these structures assumes that the director field maintains its
SeCtion, we will formulate a nonlinear mathematical mOdEI|n|t|a| p|anar geometry during its rotation provoked by the
for the ariSing of the periOdiC walls. With this formulation, external magnetic field. That iS, the Samp|e is prepared in
we will be able to obtain the final amplitude of each FOUriersuch away that’ |n|t|a||y, the orientation of the external mag-
component of the magnetic wall. In the final section, we Will netic field is perpendicular to the director direction at all
use the results of Sec. Il to compute the periodicity and thgyints in the sample. Hence, these two directions—the mag-
time spent with the formation of the periodic walls in the netic field and the director direction—define a plane on the
forbidden region. sample and, as there is not an external torque pushing the
director out of this plane, it can be assumed that, during the
Il. FUNDAMENTALS director rotation, such a plane maintains its orientation. Fur-
_ ) . thermore, as stated above, the widtlof the sample along
In order to obtain workable equations for a description ofthe & direction is so small when compared with the other
the arising of the magnetic walls, some approximations will,. ~ =2 . . P
be done on the set of equations describing the hydrodynarr‘ij-'m(':'.ns.'onS Of. the s_ample that 'F can be ?SS‘.‘”?ed that the
ics of the nematic material, the so-called Eriksen—LesIie—e!"’.‘stIC mtergctloniwhlch IS proporthnal_to ﬂ ) will immo-
Parodi (ELP) approach[16—18. Normally [8—12,19,20) bilize any director motion along this direction. These planar

these approximations are conducted in such a way that t ceondltlons can be used to abtain two important S|mpl_|f|ca-
jons on the hydrodynamics equations. The first one is the

final equations become linear. The predicted immediate ef- ition that the director d i . i
fect of this procedure is an unbounded exponential growindjmpos' ion that the director does not acquire any componen

of the walls’ amplitude and, as a consequence, the saturatédong thee, direction[8],

behavior of the system cannot be studied. As, by definition, ]

the leading mode should be determined at the initial mo- ny=cosf(x,y,z), ny=sin6(xy,z), n,=0. (1)
ments of the process, this practice is sufficient to select the .
initial fastest growing mode. However, the patterns to beThe second one is the assumption that the fluid velogity
described in this work do not arise immediately after thedoes not have components along @eﬂirection, that is,
initiation of the magnetic field. Their emergence lasts a long

time and, therefore, the linear approach is not acceptable. So, V,=0. 2)
along the approximations to be described below, we will

avoid the complete linearization of the equations. The choicghese two conditions are equivalent to assuming that the
of the nonlinear terms to be retained will be guided by thedynamical equations for this problem are bidimensional.
criterion that stresses that only those ELP equation terms thathat is, when considering the equations of the ELP ap-

are decisive for a saturated profile of the walls’ amplitude argyroach, only its components along the plane defined by the

important in the long behavior of these structures. Further-?xisé ande. must be considered
X y .

more, even being described by nonlinear equations, we wil In the ELP approachl,16—18, the time evolution of the

th?W that, '(;] thg forbli_dqt()aln regiﬁn, Ejhe c%uplin% bewVefadndirector direction and the motion of the nematic material are
Ifterent modes Is negligibly small and need not be consi given by a set of differential equations composed by the

ere_lt_d. dv the physi £ h iodi I h iah anisotropic version of the Navier-Stokes equation, the bal-
o ho s(';u yfthe IQE;I!S'(.:SKO the periodic IYIVI?CS at t Ie _nel_g “ance of torques equation, and the equation of continuity. We
orhoods of the Fralericksz transition, a Sampl€ INSIA€ yya04in our study with the continuity equation that, as the sys-

a microslide glass with dimensionsg,p,d) that satisfy the tem is assumed to be incompressible, takes the fa82
relationa>b>d will be considered. The director is initially P ' f 4

uniformly aligned along the, direction and an external con- 3,V,=0. (3
trolled magnetic fieldH is applied along theéy direction.

When this is done, there is a competition between the magone important characteristic of the geometry of the magnetic
netic susceptibility, which tends to align the director alongwalls can be understood from this equation. It is an experi-
the direction of the magnetic field, and the elastic energymental fact that the compone¥x, of the velocity is relevant
which tends to produce a director orientation consistent witfonly at the borders of the samjig,11,17. Consequently, as

its orientation at the surface of the sample. Whkis greater the magnetic walls are observed far away from the borders,
than the Fredericksz threshol#i g, the magnetic suscepti- one can mak&/,=0 on the continuity equation. As the sys-
bility overcomes the elastic resistance of the medium, andem is dynamically bidimensional, the continuity equation
the director begins to bend towards the direction of the exgives
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dyVy=0. (4) and 74, 7,, and n3 are the Miesowicz’s coefficientsy; is
the viscosity’s coefficients related to the rotation of the di-
for the region where the walls are observed. Essentially, thiector (it was assumed thag,~ — v,), and along the direc-
equation demonstrates that as long as the problem can hkien éz it was assumed thaﬁe: — (m/d)?6.
considered bidimensional and there is no fluid motion along Moreover, we also consider that the walls’ periodicity

the éx direction, the velocity of the nematic fluid will remain along theéx direction allows us to Fourier_decompo&a/y
constant along th«fgy direction. The characteristic form of and#. That is,
the stripes observed in the magnetic walls is an immediate
consequence of this equation. 2w
aVy=2>, a, cos( ) ,
n

The Navier-Stokes equation is given by n=—x
Ny V| o o ©
P\t TV X g _(9_xﬁ(_p5“ﬁ+03“)’ © 6= b, cos(nTx)=0t0=2 bncos(nTx :
n n

wherep is the density of the syster¥,, is the« component . .
of the velocity,p is the pressure, and, is the associated wheren=0,1. - - L/2 andb,=d;b, . So, from these equations

anisotropic stress tensor, which depends on the velc;t'm‘/ it follows that
the fluid, the bending of the directey, and its time variation
y C3(0) —k?cy(6).
rate 6 [1,23,24. a=—————p,. (10)
The approximation assumed above allows us to consider co(0)—k%cy(0)
the problem as bidimensional. So, the components of the
Navier-Stokes describing the motion of the nematic fluid So, each Fourier component @[fg(bn) induces a shear-
along thee, and éy directions are sufficient to describe the ing motion of the nematic material, inducing a non-null
walls’ phenomenology. Hence, the pressprean be elimi-  value to the Fourier components &fV(a,). It is important
nated from these equations by subtracting one of the compde observe that, through the functioeg, c,, c3, andcy
nents of these equations from anothkt]. Furthermore, we given in Eq.(8), Eq. (10) is strongly dependent of and,
will consider that the velocity of the matter in the sample istherefore, it is also strongly dependent by, causing the
such that we can neglect the nonlinear t&rgv,zV,. Thus, coupling between the different modes. At this point, the
usual approach8] restricted the analysis of the walls’ for-
d mation to the#-independent term of this equation. This pro-

Pa(ﬁxvy_&yvx)zaigxy_ g oyx+ dydy(Tyy = T3 cedure predicts an unbounded growing #rand, conse-
quently, does not predict a saturated profile for the walls.
+ 9 IxT2y— y0 5. (6)  But, when we consider the next-order term, we obtain
To further simplify this equation, we must remember that 92\ .
the characteristic time involved in the phenomenon that we a=Rp| 1— —2) by, (11
are studying is so lon@6] that the viscosity becomes the %o
dominant dynamical parameter of the nematic fluid flow and,
therefore, any inertial term can be neglected. Furthermorevhere
using the expressions for the viscosity tensor given, for ex-
ample, in Refs[23,24], and taking into account E@4), we y1k?
get RO:—~2 and
73K 7

C1(8) F(,Vy) +Col 8) Wy + Ca( ) A1+ Ca( 8) d5(3,6) =0, -
(7) 2 73tk m,

(P = ~ y
® (my+273) +KA(2my+ mp+273)

(12
where

C1(0) = 9a+ (75— 13)SIM? 0+ (77, — 7a+ 273 Sir? 0)coS 6 andk®= (kd/#)? is the reduced wave vector. This equation
shows that for each, there is an anglep, , above which the

2 Fourier component of the bending of the directbg, no
Co(6)=— E(E) [ 72+ 3+ (73— 172)cOS 2], longer induces a non-null value to the corresponding Fourier
) componentag,, of the ;hegring&xvy: _ o
As the above equation is not sufficient to find independent
solutions forV, and ¢, another equation is needed. This
equation is the balance of torques equafib23,24 that, for
the planar geometry defined by Eq4$) and(2), assumes the
following form:

C3(6)=y,1926sin 20,

1
C4(9):_§‘}’1(1+ cos 29),

041707-3



SIMOES, PALANGANA, ARROTEIA, AND VILARIM

Y100=yiNZ(0Vy) + Kad 920+ 3201+ K 5926
+ xaH?n,n, . (13

PHYSICAL REVIEW E 63 041707

As can be seen, for example, &3], Eqg. (18) has the
general form of the standard equations that describe the pat-
terns formation in many physical systems. In this paper, it
will be assumed that it describes the formation of the mag-

By substituting in this equation the value of the shearnetic walls of NLCs in the neighborhoods of the’ &der-

dxVy obtained in Eq(11) and making the changes

HZ H? K
_Xa Ct 2= 33

T ) o )
V1 H% K2z

)

XaH|2::K22< d

a2 |2
B) :K22<a> : (14

it is obtained that

bnzibn[l— tf]— o (15)
To Omax)  Tomax
where
(1_ 7’1}2 )
T°(k):(h2(—11—REK)T<2): (hZ—WiJ—r;"kzl) - (19
Oma K) = (hz_Rl_REZ) .
{(hz—l—RT@)l_—ORO 1+Z§ +3h?
17
and

L 2 3 L
In:j 63cog n—x|dx—b:, n=0,1---
0 L 2

icksz threshold. Their first-order term reproduces the already
known results about the initial moments of the time evolu-
tion of b,. Up to this order, an unbounded exponential
growth for the amplitudéy is predicted and, according to
Lonberget al.[8], the leading mode is the one that provides
the fastest growth to this amplitude. Now, with the third-
order term of Eq(18), the unbounded growth of the walls’
amplitude is prevented and, therefore, a study of the long
behavior of these structures is possible.

Finally, Eq.(18) is integrable and its solution is given by

B \/ A el27 7]
Di(7) = = Omak k) 62, (K) + Agel2 7o (19

where A, is an integration constant that may be fixedrat
=0.

This is the equation that gives the time evolution of each
modek. In the following section, the mathematical results of
this section will be used to study the arising of magnetic
walls at the neighborhoods of the Ewericksz transition.

Ill. THE LEADING MODE

In this section, we will use Eq18) to examine the for-
mation of magnetic walls at the neighborhoods of theeHre
ericksz threshold and it will be shown that, in this region, the
statement that says that there is a unique isolated mode de-
termining the physical properties of the observed patterns is
rather ambiguous and cannot be considered—even as an
approximation—for the real physical situation. That is, a
large set of states contributes equally to the formation of the

describes the interaction between the different Fourief?@gnetic walls in this region.

modes. Now, observe that the coupling of the tdrmis
which
determines the intensity of the interaction between the vari
ous modes. First, obserythis will be demonstrated in detail

given by the product of the variables, and 62

max?

The leading mode principle states that the wave number,
k,, observed in the periodic walls can be determined by
choosing the mode that gives the initial highest velocity to
the amplitude of the periodic walls, . So, according to the
results of the preceding section, this mode must satisfy

in the next sectionthat in the forbidden region the depen-

dence of these variables &Ris so flat that it does select any
mode and, therefore, in this region this coupling term can be
considered constant. Furthermore, it is an experimental
fact—which will be confirmed by our theory in the
following—that, in this region, the time, spent in the aris-
ing of the wall is exceedingly large, becoming infinite at the HTo 05 (2)
Freedericksz threshold. So, this interacting term is a small o |7 2 + 25— IOmax=0, (2D
constant that, in the forbidden region, can be neglected. max max

Hence, our approximation for this problem considers that

d(b)=0 at 7=0. (20)

When this equation is applied to E{.9), it leads to

where 6, stands for the initial distribution of the mods
that, as usudll,9], can be found using the equipartition theo-

2
bkzibk 1- b (18  rem. The behavior of the solution obtained with Eg2),
To ﬁw when the magnetic field approaches thediericksz thresh-

old (h?=1), is now going to be discussed. An analytical
gives the time evolution of each mode in the neighborhoodsomputation shows that aroukd~0 the non-null and real
of the Freedericksz threshold. solutions of Eq( 21) are given by
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373l ¥1(1—h?) +Kaansl+ 031 375(h?— 1)+ 75(11h2—9) ]

k?~-2 5
P(7711772!7731711h )

73

or 2(b)=0 at 7=0 for 1<h?<h?. (26)

k’*=0, (22
Finally, using an analytical computation, it was found that
where P(751,72,73,71,h?) is an awkward and non-null
function that has no influence on the results presented below.
From this equation, it is easy to see that in the whole interval 5!(b,)=— 2412% +0(6?)<0 at =0 for h=h,,
3

1<h2<h?, (23) (27)
where where O(62) represents the terms of the order €f, or
) 5 higher, that are insignificant. So, exactlytet h,,,, only the
h2 (H|m) 14 73(3K 3373+ 26%y7) 24 forrth derii\(/ative of thIF gré)wing rs],peedI of trr:e directolr wri]th
m=— | 2| ~ ' relation tok is non-null and it is this value that controls the
"\ HE 1[375— 653zt 1173)]

width of the distribution of modes at this point.
Above, we have argued that, in the forbidden region, the
interaction between different modes does not need to be

. . taken into account due to the fact that its coupling term is
neous bending of the directéand, therefore, an absence of negligibly small, nor does it distinguish between different

walls) would be found for these values of the magnetic ﬁeldrnooles Nevertheless, one can challenge this argument by
[19,20. Some of us have done experimental IIWes“gat'onssaying that the long time evolved in the building of the ob-

of these results and found that, no matter how close to th?erved structures may invalidate our reasoning. However, the

Frel?derlckszlthreshfold the mFeatsrL]Jrementstﬁretmad?H T?ﬁne Ssult stated above, saying that in the forbidden region there
walls were always founf6]. Furthermore, the time that the is no leading mode and that all modes in the neighborhoods

observer must wait for the clear observation of these struc-

~2_ . . .
tures seems to become infinite as the critical point is ap® k*=0 contribute to the final profile of the walls, was
proached. established in the very beginning of the processyab,

As these experimental results are in clear contradictior?efore the interaction between the different modes had time
with the predictions of the leading mode principle, it be- (0 Produce any significant effect. So, the main message of

comes necessary to understand the formation of these walliS Work, namely the breakdown of the leading mode prin-
from another point of view. In order to do it, we consider the CIP!€ in the forbidden region, does depend on these interac-

second derivativeg3(b), at 7=0. It was analytically com- tions.
puted around the critical point, giving

the unique real solution of Eq21) is given byk?=0.
So, according to the leading mode principle, a homoge

The results exposed in Eq$22)—(27) are graphically
exhibited in Fig. 1, where a numerical computation is
5 ) ) ) shown using the known parameters of the
Ji(b)~27m3[3y1(h=1) (73— 0572) (N-(p-methoxybenzylidenep’-butylaniline (MBBA) for

a2 2/0._ 112 the behavior ofby as a function ofk as the pointh,, is
3Kaa73+ 7177365(9— 11h7)] approached. From these figures, we clearly see that, around
i (h2_h|2m) h,, the concept of an isolated mode contributing to the
~675Ka3 (250  observed periodicity of the walls is meaningless and a new
way to compute the contribution to the final periodicity of
) o ) the walls must be found.
From this result, it is easy to see that, at the pdirth;;,, We will now propose a way to calculate the walls’ peri-
the second derivative is null and, furthermore, it changegyicity in the forbidden region. As in this region the ob-
sign when this point is crossed. Moreover, in the whole in-served periodicity of the walls cannot be understood as a
terval 1=h?<hf, , the second derivative is smalt is pro-  result of the contribution of a unique and isolated mode, we
portional to »3) and negative. Hence, as the range of themay suppose that the final walls’ periodicity is determined
modes contributing to the walls formation is given by theby the long-time collective growth of the modes neighboring
inverse of&ﬁ(bk), the usual interpretation that follows Eq. the modek=0. In this case, a natural candidate to fix the
(22), which says that in the forbidden region the uniqueparticipation of each of these modes in the final profile is
mode Contributing to the wall's formation is given &)? mer6|y the maximum amplitude that each of them can attain.
=0, cannot be true. So, it can be assumed that, arouke 0, the final profile
Likewise, a straightforward calculation shows that 0(x) = 6(x,t—=) of the walls could be approximated by

(1-hZ)
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FIG. 1. Graphics of the function,# at =0 whenk is changed. Each figure was computed for a diffetewalue. By using the known
parameters of the MBBA, they show the evolution of the leading mode as the Ipgintdefined at Eq(24), is approached(a) was

computed ah=2h,,,, and the poink, for which the functiond .6 has the maximum growth, is clearly observed. This is the fastest mode
that, according to the leading mode principle, will determine the final periodicity of the (ppikas computed at=1.3%,,,, and it shows
that the leading mode is less pronound@iiwas computed di=1.1h,,, showing that the leading mode is not clearly recognizabewas

computed ah=h,,,, demonstrating that the leading mode collapsed to the fiGir@. From these figures we have clear evidence that, as
h;, is approached, the width of the modes around the leading mode becomes so large that an isolated leading mode cannot be recognized.

The magnetic field was rescaled is such a way that thedericksz threshold was taken as unity. The unitids afidd,6 can be considered

as arbitrary.
Jalb a
0(x)= I|mz by (t)cos(kx) 0(x)= \/BJ : \/— —k?cogkx)dk
t—o k —\alb b
EWNG

X

where Gmax(Nk) is the asymptotic limit of Eq(19), given by  whereJ,(y/a/bx) is a first-class Bessel function of order 1.
Eg. (17). However, with the form ford,,,(K) given by Eq.  As, due to our nonlinear approximations, our results cannot
(17), this integration is extremely difficult, and probably im- be extended to the walls’ nodes and consequently they are
possible. As the maximum of,,,(k) occurs atk=0, it can  only valid for smallx, we can use the approximatiar(x)

Jq , (31

L2 ~ ~
~ f Omax K)cog kx), (28
0

be expanded around this point and = (x/2)cos{/2) to obtain
Omar K) = Va—bk? (29 1 \/5
O(X)= 5 \/_cos X
is obtained, where
T 3 (h2—1) 1 [(h?-1) (32)
- == ~ —1)cos; — X.
3 e dbe 3K 2 N 2Kh? 2 K
= W( 1) andb=3 et (30)
With this equation for the profile of the wall along tee
It has been assumed thdt?1)? is small, so direction, we can get its wave vector, which is given by
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1 predicts that the fastest mode will corresponckte0. This
k?=—(h%?-1), (33 result corresponds to a homogeneous bending of the director

4K and, therefore, to the absence of any texture. As this result
S . . was not observed in the expenment we have here strong
which is just the result experimentally found, namely a IlnearevIdence that, at least around the ddericksz threshold, the
relationship betweeh? andk? [6]. Furthermore, this expres- leading mode principle deserves some reformulation. The
sion fork? can be substituted in E@16) to obtain the time main result presented by this work states that, in this region,

spent in the walls’ formation, in the forbidden region, as athe modek=0 is the center of a large distribution of modes

function of the magnetic fielth. The result is given by where each of them gives almost the same contribution to the
_ final profile of the observed walls. In order to obtain a model
h2)— 4 (h2=1)(71— 1) +4K 73 a4 for the magnetic walls formation, we have supposed that, due
7o(h%) = 3(h2—1) (h2—1) 9, +4K 75 . (34) to the long time involved in this process, around theelre

ericksz threshold, each mode attains its maximum amplitude.
which, as was experimentally found, diverges wihén-1. These isolated contributions have been added and the final
profile of the periodic walls has been obtained. Our results
IV. CONCLUSION agree with the experimental findings and, at least for the
twist-bend geometry, we have proved that there is not a for-
In this paper, we have studied the formation of periodichidden region. We have also computed the time spent with
patterns—magnetic walls—at the neighborhoods of thehe formation of these structures and we have experimentally
Freedericksz critical point. These structures were induced byound that, as the Feslericksz threshold is approached, this
an external magnetic field and a twist-bend geometry wasime approaches the infinite.
used[1]. We have shown that the results of the leading mode
principle, which is the theory that up to now has been used to
describe their formatiofi7,8], cannot explain its arising in
this region. It is known that in the interval<lh?< h,zm, This work was supported by the Brazilian agency CNPq
whereh?  is given in Eq.(24), the leading mode principle (PADCT).
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